6. Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ; SPIRIT-AI and CONSORT-AI Working Group; SPIRIT-AI and CONSORT-AI Steering Group; SPIRIT-AI and CONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Nat Med 2020;26:1351-63. doi: 10.1038/s41591-020-1037-7
7. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med 2022;28:924-33. doi: 10.1038/s41591-022-01772-9
8. Schneider R, Randolph GW, Barczynski M, Dionigi G, Wu CW, Chiang FY, et al. Continuous intraoperative neural monitoring of the recurrent nerves in thyroid surgery: a quantum leap in technology. Gland Surg 2016;5:607-16. doi: 10.21037/gs.2016.11.10
9. Dionigi G, Chiang FY, Hui S, Wu CW, Xiaoli L, Ferrari CC, et al. Continuous intraoperative neuromonitoring (C-IONM) technique with the automatic periodic stimulating (APS) accessory for conventional and endoscopic thyroid surgery. Surg Technol Int 2015;26:101-14.
11. Schneider R, Randolph GW, Sekulla C, Phelan E, Thanh PN, Bucher M, et al. Continuous intraoperative vagus nerve stimulation for identification of imminent recurrent laryngeal nerve injury. Head Neck 2013;35:1591-8. doi: 10.1002/hed.23187
14. Wu CW, Wang MH, Chen CC, Chen HC, Chen HY, Yu JY, et al. Loss of signal in recurrent nerve neuromonitoring: causes and management. Gland Surg 2015;4:19-26. doi: 10.3978/j.issn.2227-684X.2014.12.03
15. Zha X, Wehbe L, Sclabassi RJ, Mace Z, Liang YV, Yu A, et al. A deep learning model for automated classification of intraoperative continuous EMG. IEEE Trans Med Robot Bionics 2021;3:44-52. doi: 10.1109/tmrb.2020.3048255
16. Park D, Kim I. Application of machine learning in the field of intraoperative neurophysiological monitoring: a narrative review. Appl Sci 2022;12:7943. doi: 10.3390/app12157943
19. Kok CL, Ho CK, Tan FK, Koh YY. Machine learning-based feature extraction and classification of EMG signals for intuitive prosthetic control. Appl Sci 2024;14:5784. doi: 10.3390/app14135784
20. Boaro A, Azzari A, Basaldella F, Nunes S, Feletti A, Bicego M, et al. Machine learning allows expert level classification of intraoperative motor evoked potentials during neurosurgical procedures. Comput Biol Med 2024;180:109032. doi: 10.1016/j.compbiomed.2024.109032
28. Fraser AG, Biasin E, Bijnens B, Bruining N, Caiani EG, Cobbaert K, et al. Artificial intelligence in medical device software and high-risk medical devices: a review of definitions, expert recommendations and regulatory initiatives. Expert Rev Med Devices 2023;20:467-91. doi: 10.1080/17434440.2023.2184685